10(3x^2-7)=10000(2x+4)

Simple and best practice solution for 10(3x^2-7)=10000(2x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(3x^2-7)=10000(2x+4) equation:


Simplifying
10(3x2 + -7) = 10000(2x + 4)

Reorder the terms:
10(-7 + 3x2) = 10000(2x + 4)
(-7 * 10 + 3x2 * 10) = 10000(2x + 4)
(-70 + 30x2) = 10000(2x + 4)

Reorder the terms:
-70 + 30x2 = 10000(4 + 2x)
-70 + 30x2 = (4 * 10000 + 2x * 10000)
-70 + 30x2 = (40000 + 20000x)

Solving
-70 + 30x2 = 40000 + 20000x

Solving for variable 'x'.

Reorder the terms:
-70 + -40000 + -20000x + 30x2 = 40000 + 20000x + -40000 + -20000x

Combine like terms: -70 + -40000 = -40070
-40070 + -20000x + 30x2 = 40000 + 20000x + -40000 + -20000x

Reorder the terms:
-40070 + -20000x + 30x2 = 40000 + -40000 + 20000x + -20000x

Combine like terms: 40000 + -40000 = 0
-40070 + -20000x + 30x2 = 0 + 20000x + -20000x
-40070 + -20000x + 30x2 = 20000x + -20000x

Combine like terms: 20000x + -20000x = 0
-40070 + -20000x + 30x2 = 0

Factor out the Greatest Common Factor (GCF), '10'.
10(-4007 + -2000x + 3x2) = 0

Ignore the factor 10.

Subproblem 1

Set the factor '(-4007 + -2000x + 3x2)' equal to zero and attempt to solve: Simplifying -4007 + -2000x + 3x2 = 0 Solving -4007 + -2000x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1335.666667 + -666.6666667x + x2 = 0 Move the constant term to the right: Add '1335.666667' to each side of the equation. -1335.666667 + -666.6666667x + 1335.666667 + x2 = 0 + 1335.666667 Reorder the terms: -1335.666667 + 1335.666667 + -666.6666667x + x2 = 0 + 1335.666667 Combine like terms: -1335.666667 + 1335.666667 = 0.000000 0.000000 + -666.6666667x + x2 = 0 + 1335.666667 -666.6666667x + x2 = 0 + 1335.666667 Combine like terms: 0 + 1335.666667 = 1335.666667 -666.6666667x + x2 = 1335.666667 The x term is -666.6666667x. Take half its coefficient (-333.3333334). Square it (111111.1112) and add it to both sides. Add '111111.1112' to each side of the equation. -666.6666667x + 111111.1112 + x2 = 1335.666667 + 111111.1112 Reorder the terms: 111111.1112 + -666.6666667x + x2 = 1335.666667 + 111111.1112 Combine like terms: 1335.666667 + 111111.1112 = 112446.777867 111111.1112 + -666.6666667x + x2 = 112446.777867 Factor a perfect square on the left side: (x + -333.3333334)(x + -333.3333334) = 112446.777867 Calculate the square root of the right side: 335.330848368 Break this problem into two subproblems by setting (x + -333.3333334) equal to 335.330848368 and -335.330848368.

Subproblem 1

x + -333.3333334 = 335.330848368 Simplifying x + -333.3333334 = 335.330848368 Reorder the terms: -333.3333334 + x = 335.330848368 Solving -333.3333334 + x = 335.330848368 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '333.3333334' to each side of the equation. -333.3333334 + 333.3333334 + x = 335.330848368 + 333.3333334 Combine like terms: -333.3333334 + 333.3333334 = 0.0000000 0.0000000 + x = 335.330848368 + 333.3333334 x = 335.330848368 + 333.3333334 Combine like terms: 335.330848368 + 333.3333334 = 668.664181768 x = 668.664181768 Simplifying x = 668.664181768

Subproblem 2

x + -333.3333334 = -335.330848368 Simplifying x + -333.3333334 = -335.330848368 Reorder the terms: -333.3333334 + x = -335.330848368 Solving -333.3333334 + x = -335.330848368 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '333.3333334' to each side of the equation. -333.3333334 + 333.3333334 + x = -335.330848368 + 333.3333334 Combine like terms: -333.3333334 + 333.3333334 = 0.0000000 0.0000000 + x = -335.330848368 + 333.3333334 x = -335.330848368 + 333.3333334 Combine like terms: -335.330848368 + 333.3333334 = -1.997514968 x = -1.997514968 Simplifying x = -1.997514968

Solution

The solution to the problem is based on the solutions from the subproblems. x = {668.664181768, -1.997514968}

Solution

x = {668.664181768, -1.997514968}

See similar equations:

| x+0.17x=159 | | sin29=16/x | | 180=162+x | | 4w+4+4w+8=180 | | 2y+37=32+6y | | -4(2n-6)=36 | | 4x/7-3 | | (4x^2)-1=98 | | -3x+32=8 | | x^2-12x+100=80 | | 4(t-2)+6t=5(2t+3)-8 | | 3(x+9)-25= | | 4(2+v)+33v=15v | | 3x-3/2x-2 | | -4(4y-6)-y=-2(y-3) | | 4x^2-1=98 | | (3x-5)(4x-2)= | | 3z+11=2z+9 | | (x-3)7=6x+22 | | -9=3-(10-a) | | (-15).2-(-16)/(-8) | | 3x-9x+6=x-2+8 | | -4(4+r)=16 | | 54=7w-w | | 6n+7=n-28 | | (-15)2-(-16)/(-8) | | 61/4=3/5c | | 4s-9s-8=7 | | 180=42+x | | 27-r=-10 | | 2a+b=7.5 | | 11x-21=39+9x |

Equations solver categories